

Eliminating gaps in the
hiring experience

2

3

B E C O M I N G A S Q L G U R U

• Syntax Overview
• Join Types
• Set Operators
• Filtered Aggregates
• Grouping Sets, Cube, and Rollup
• Subqueries
• Window Functions
• Common Table Expressions (CTE’s)
• Lateral Join
• Questions

AGENDA

4

B E C O M I N G A S Q L G U R U

QUERIES – SYNTAX OVERVIEW
When we think of Standard SQL Syntax...

SELECT expression
FROM table
WHERE condition
ORDER BY expression

5

B E C O M I N G A S Q L G U R U

QUERIES – SYNTAX OVERVIEW
Or maybe we think…

SELECT expression
FROM table
[JOIN TYPE] table2
ON join_condition
WHERE condition
ORDER BY expression

6

B E C O M I N G A S Q L G U R U

QUERIES – SYNTAX OVERVIEW
Then we think…

SELECT expression
FROM table
JOIN_TYPE table2
ON join_condition
WHERE condition
GROUP BY expression
HAVING condition
ORDER BY expression

7

B E C O M I N G A S Q L G U R U

QUERIES – SYNTAX OVERVIEW
But really …

[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]

[* | expression [[AS] output_name] [, ...]]
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY expression [, ...]]
[HAVING condition [, ...]]
[WINDOW window_name AS (window_definition) [, ...]]
[{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]]
[LIMIT { count | ALL }]
[OFFSET start [ROW | ROWS]]
[FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
[FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE } [OF table_name [, ...]] [NOWAIT] [...]]

8

B E C O M I N G A S Q L G U R U

QUERIES – SYNTAX OVERVIEW
where from_item can be one of:

[ONLY] table_name [*] [[AS] alias [(column_alias [, ...])]]
[LATERAL] (select) [AS] alias [(column_alias [, ...])]
with_query_name [[AS] alias [(column_alias [, ...])]]
[LATERAL] function_name ([argument [, ...]])

[WITH ORDINALITY] [[AS] alias [(column_alias [, ...])]]
[LATERAL] function_name ([argument [, ...]]) [AS] alias (column_definition [, ...])
[LATERAL] function_name ([argument [, ...]]) AS (column_definition [, ...])
[LATERAL] ROWS FROM(function_name ([argument [, ...]]) [AS (column_definition [, ...])] [, ...])

[WITH ORDINALITY] [[AS] alias [(column_alias [, ...])]]
from_item [NATURAL] join_type from_item [ON join_condition | USING (join_column [, ...])]

9

B E C O M I N G A S Q L G U R U

QUERIES – SYNTAX OVERVIEW
and grouping_element can be one of:

()
expression
(expression [, ...])
ROLLUP ({ expression | (expression [, ...]) } [, ...])
CUBE ({ expression | (expression [, ...]) } [, ...])
GROUPING SETS (grouping_element [, ...])

and with_query is:

with_query_name [(column_name [, ...])] AS (select | values | insert | update | delete)

TABLE [ONLY] table_name [*]

10

B E C O M I N G A S Q L G U R U

QUERIES – BASIC EXAMPLES
VALUES (1, 'one'), (2, 'two'), (3, 'three');

Column1 Column2

1 one

2 two

3 three

TABLE customers;

Is equivalent to:

SELECT * FROM customers;

11

B E C O M I N G A S Q L G U R U

JOIN TYPES
Inner Join:

Joins each row of the first table with each row from the second table for which the condition matches.
Unmatched rows are removed

Outer Join:
Joins each row from the one table with each row from the second table for which the condition matches.
Unmatched rows are added to the result set such that:

• Left: All rows from the left table are returned, with null values displayed for the right table
• Right: All rows from the right table are returned, with null values displayed for the left table
• Full: All rows from both tables are returned, with null values displayed for unmatched rows in each

table.

Cross Join:
Creates a Cartesian Product of two tables

12

B E C O M I N G A S Q L G U R U

CROSS JOINS: EXAMPLE

store_id store_city

1 chicago

2 dallas

product_id product_desc

1 coffee

2 tea

stores

SELECT * FROM stores
CROSS JOIN products

SELECT * FROM stores, products

store_id store_city product_id product_desc

1 chicago 1 coffee

1 chicago 2 tea

2 dallas 1 coffee

2 dallas 2 tea

Results:

products

13

B E C O M I N G A S Q L G U R U

SET OPERATIONS

ID customer_name city postal_code country

1 Stella	Nisenbaum Chicago 60605 USA

2 Stephen	Frost New York 10012 USA

3 Luke Daniels Stockholm 113	50 Sweden

4 Artem Okulik Minsk 220002 Belarus

customers

ID supplier_name city postal_code country revenue

1 Herpetoculture,	LLC Meriden 06451 USA 300,000,000

2 Bodega	Privada Madrid 28703 Spain 700,000,000

3 ExoTerra Montreal H9X OA2 Canada 400,000,000

4 Goose	Island	Beer,	Co Chicago 60612 USA 250,000,000

suppliers

14

B E C O M I N G A S Q L G U R U

SET OPERATIONS: UNION VS UNION ALL
SELECT city FROM customers
UNION ALL
SELECT city FROM suppliers

SELECT city FROM customers
UNION
SELECT city FROM suppliers

city

Chicago

New	York

Stockholm

Minsk

Meriden

Madrid

Montreal

Chicago

city

Chicago

New	York

Stockholm

Minsk

Meriden

Madrid

Montreal

15

B E C O M I N G A S Q L G U R U

SET OPERATIONS: EXCEPT VS INTERSECT
SELECT city FROM customers
EXCEPT
SELECT city FROM suppliers

SELECT city FROM customers
INTERSECT
SELECT city FROM suppliers

city

New	York

Stockholm

Minsk

city

Chicago

16

B E C O M I N G A S Q L G U R U

FILTERED AGGREGATES (9 . 4)

17

Before:

SELECT
Sum(revenue) as total_revenue
, Sum(Case

when country = ‘USA’
then revenue

else 0
End) as USA_revenue

FROM suppliers s

Now:

SELECT
Sum(revenue) as total_revenue
, Sum(revenue) FILTER (where country = ‘USA’) as USA_revenue
FROM suppliers s

B E C O M I N G A S Q L G U R U

GROUPING SETS, CUBE, ROLLUP(9 . 5)

18

Grouping Sets: Allows for the creation of sets wherein a subtotal is
calculated for each set

Rollup: Allows for the creation of a hierarchical grouping/subtotals starting
with the primary group, then the secondary and so on

Cube: Allows for the creation of subtotals for all possible groups (not only
hierarchical)

B E C O M I N G A S Q L G U R U

GROUPING SETS, CUBE, ROLLUP(9 . 5)

19

id customer_id supplier_id order_date order_amt

1 1 1 2016-01-15 100

2 1 3 2016-02-05 250

3 3 2 2016-01-25 85

4 3 4 2016-01-07 125

5 4 4 2016-02-19 65

6 4 1 2016-01-20 150

7 1 3 2016-02-17 300

orders

B E C O M I N G A S Q L G U R U

GROUPING SETS, CUBE, ROLLUP(9 . 5)

20

SELECT
s.country
, s.supplier_name
, date_trunc('month', o.order_date)::date as order_month
, c.customer_name
, sum(o.order_amt) as sum_amt
, avg(o.order_amt)::int as avg_amt
, count(o.id) as ct
FROM orders o
JOIN customers c

ON o.customer_id = c.id
JOIN suppliers s

ON o.supplier_id = s.id
GROUP BY s.country , s.supplier_name ,date_trunc('month', o.order_date), c.customer_name

B E C O M I N G A S Q L G U R U

GROUPING SETS, CUBE, ROLLUP(9 . 5)

21

country supplier_name order_month customer_name sum_amt avg_amt ct

Canada ExoTerra 2016-02-01 Stella	Nisenbaum 550 275 2

Spain Bodega	Privada 2016-01-01 Luke	Daniels 85 85 1

USA Goose	Island	
Beer,	Co 2016-01-01 Luke	Daniels 125 125 1

USA Goose	Island	
Beer,	Co 2016-02-01 Artem	Okulik 65 65 1

USA Herpetoculture,	
LLC 2016-01-01 Artem	Okulik 150 150 1

USA Herpetoculture,	
LLC 2016-01-01 Stella	Nisenbaum 100 100 1

Results:

B E C O M I N G A S Q L G U R U

GROUPING SETS(9 . 5)

22

SELECT
Case when grouping(supplier_name) = 0

then s.supplier_name else 'All Suppliers' end as supplier_name
,Case when grouping(date_trunc('month', o.order_date)) = 0

then date_trunc('month', o.order_date)::date::varchar else 'All Months' end as order_month
, Case when grouping(customer_name) = 0

then c.customer_name else 'All Customers' end as customer_name
, sum(o.order_amt) as sum_amt
, avg(o.order_amt)::int as avg_amt
, count(o.id) as ct
FROM orders o
JOIN customers c

ON o.customer_id = c.id
JOIN suppliers s

ON o.supplier_id = s.id
GROUP BY grouping sets (s.supplier_name, date_trunc('month', o.order_date),c.customer_name, ())
ORDER BY grouping(supplier_name, customer_name, date_trunc('month', o.order_date))

B E C O M I N G A S Q L G U R U

GROUPING SETS(9 . 5)

23

supplier_name order_month customer_name sum_amt avg_amt ct

Bodega	Privada All	Months All	Customers 85 85 1

ExoTerra All	Months All	Customers 550 275 2

Goose	Island	Beer,	Co All	Months All	Customers 190 95 2

Herpetoculture,	LLC All	Months All	Customers 250 125 2

All	Suppliers All	Months Artem	Okulik 215 108 2

All	Suppliers All	Months Luke	Daniels 210 105 2

All	Suppliers All	Months Stella	Nisenbaum 650 217 3

All	Suppliers 2016-02-01 All	Customers 615 205 3

All	Suppliers 2016-01-01 All	Customers 460 115 4

All	Suppliers All	Months All	Customers 1075 154 7

Results:

B E C O M I N G A S Q L G U R U

ROLLUP(9 . 5)

24

SELECT
Case when grouping(s.country) = 0

then s.country else 'All Countries' end as supplier_country
, Case when grouping(supplier_name) = 0

then s.supplier_name else 'All Suppliers' end as supplier_name
, Case when grouping(customer_name) = 0

then c.customer_name else 'All Customers' end as customer_name
, sum(o.order_amt) as sum_amt
, avg(o.order_amt)::int as avg_amt
, count(o.id) as ct
FROM orders o
JOIN customers c

ON o.customer_id = c.id
JOIN suppliers s

ON o.supplier_id = s.id
WHERE s.country in (‘USA’, ‘Spain’)
GROUP BY rollup(s.country ,supplier_name ,customer_name)

B E C O M I N G A S Q L G U R U

ROLLUP(9 . 5)

25

supplier_country supplier_name customer_name sum_amt avg_amt ct

Spain Bodega	Privada Luke	Daniels 85 85 1

Spain Bodega	Privada All	Customers 85 85 1

Spain All	Suppliers All	Customers 85 85 1

USA Goose	Island	Beer,	Co Artem	Okulik 65 65 1

USA Goose	Island	Beer,	Co Luke	Daniels 125 125 1

USA Goose	Island	Beer,	Co All	Customers 190 95 2

USA Herpetoculture,	LLC Artem	Okulik 150 150 1

USA Herpetoculture,	LLC Stella	Nisenbaum 100 100 1

USA Herpetoculture,	LLC All	Customers 250 125 2

USA All	Suppliers All	Customers 440 110 4

All	Countries All	Suppliers All	Customers 1075 154 7

Results:

B E C O M I N G A S Q L G U R U

CUBE(9 . 5)

26

SELECT
Case when grouping(supplier_name) = 0

then s.supplier_name else 'All Suppliers' end as supplier_name
, Case when grouping(customer_name) = 0

then c.customer_name else 'All Customers' end as customer_name
, sum(o.order_amt) as sum_amt
, avg(o.order_amt)::int as avg_amt
, count(o.id) as ct
FROM orders o
JOIN customers c

ON o.customer_id = c.id
JOIN suppliers s

ON o.supplier_id = s.id
WHERE c.id in (1,3)
GROUP BY cube(supplier_name ,customer_name)
ORDER BY grouping(supplier_name), supplier_name, grouping(customer_name), customer_name

B E C O M I N G A S Q L G U R U

CUBE(9 . 5)

27

supplier_name customer_name sum_amt avg_amt ct

Bodega	Privada Luke	Daniels 85 85 1

Bodega	Privada All	Customers 85 85 1

ExoTerra Stella	Nisenbaum 550 275 2

ExoTerra All	Customers 550 275 2

Goose	Island	Beer,	Co Luke	Daniels 125 125 1

Goose	Island	Beer,	Co All	Customers 125 125 1

Herpetoculture,	LLC Stella	Nisenbaum 100 100 1

Herpetoculture,	LLC All	Customers 100 100 1

All	Suppliers Luke	Daniels 210 105 2

All	Suppliers Stella	Nisenbaum 650 217 3

All	Suppliers All	Customers 860 172 5

Results:

B E C O M I N G A S Q L G U R U

SUBQUERIES: UNCORRELATED
Uncorrelated subquery:

- Subquery calculates a constant result set for the upper query
- Executed only once

SELECT supplier_name, city
FROM suppliers s
WHERE s.country in (SELECT country FROM customers)

supplier_name city

Herpetoculture,	LLC Meriden

Goose	Island	Beer,	Co Chicago

28

B E C O M I N G A S Q L G U R U

SUBQUERIES: CORRELATED
Correlated subquery:

- Subquery references variables from the upper query
- Subquery has to be re-executed for each row of the upper query
- Can often be re-written as a join

SELECT supplier_name, country
, (SELECT count(distinct id) FROM customers c where c.country=s.country) cust_ct
FROM suppliers s

supplier_name country cust_ct

Herpetoculture,	LLC USA 2

Bodega	Privada Spain 0

ExoTerra Canada 0

Goose	Island	Beer,	Co USA 2

29

B E C O M I N G A S Q L G U R U

WINDOW FUNCTIONS - BASICS
What is a window function?
A function which is applied to a set of rows defined by a window descriptor and returns a
single value for each row from the underlying query

When should you use a window function?
Any time you need to perform calculations or aggregations on your result set while
preserving row level detail

30

B E C O M I N G A S Q L G U R U

WINDOW FUNCTIONS - SYNTAX
function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER
window_name
function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER (
window_definition)
function_name (*) [FILTER (WHERE filter_clause)] OVER window_name
function_name (*) [FILTER (WHERE filter_clause)] OVER (window_definition)

Where window_definition is:

[existing_window_name]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]]
[frame_clause]

{ RANGE | ROWS } frame_start
{ RANGE | ROWS } BETWEEN frame_start AND frame_end

31

B E C O M I N G A S Q L G U R U

WINDOW FUNCTIONS – FRAME CLAUSE
Frame_clause can be one of :

{ RANGE | ROWS } frame_start
{ RANGE | ROWS } BETWEEN frame_start AND frame_end

Where frame_start can be one of:

UNBOUNDED PRECEDING
Value PRECEDING
CURRENT ROW

Where frame_end can be one of:

UNBOUNDED FOLLOWING
Value FOLLOWING
CURRENT ROW - (default)

When frame_clause is omitted, default to RANGE UNBOUNDED PRECEDING

32

B E C O M I N G A S Q L G U R U

WINDOW FUNCTIONS – BASIC EXAMPLE
SELECT
supplier_name , country, revenue
, avg(revenue) OVER (PARTITION BY country)
FROM suppliers

supplier_name country revenue avg

ExoTerra Canada 400,000,000 400,000,000

Bodega	Privada Spain 700,000,000 700,000,000

Herpetoculture,	LLC USA 300,000,000 275,000,000

Goose	Island	Beer,	Co USA 250,000,000 275,000,000

33

B E C O M I N G A S Q L G U R U

WINDOW FUNCTIONS – RANGE VS ROWS
With RANGE all duplicates are considered part of the same group and the function is run across all of
them, with the same result used for all members of the group.

SELECT
supplier_name , country, revenue
, avg(revenue) OVER (ORDER BY country RANGE UNBOUNDED PRECEDING) ::int
FROM suppliers

supplier_name country revenue avg

ExoTerra Canada 400,000,000 400,000,000

Bodega	Privada Spain 700,000,000 550,000,000

Herpetoculture,	LLC USA 300,000,000 412,500,000

Goose	Island	Beer,	Co USA 250,000,000 412,500,000

34

B E C O M I N G A S Q L G U R U

WINDOW FUNCTIONS – RANGE VS ROWS
With ROWS, can get a “running” average even across duplicates within the ORDER BY

SELECT
supplier_name , country, revenue
, avg(revenue) OVER (ORDER BY country ROWS UNBOUNDED PRECEDING) ::int
FROM suppliers

supplier_name country revenue avg

ExoTerra Canada 400,000,000 400,000,000

Bodega	Privada Spain 700,000,000 550,000,000

Herpetoculture,	LLC USA 300,000,000 466,666,667

Goose	Island	Beer,	Co USA 250,000,000 412,500,000

35

B E C O M I N G A S Q L G U R U

WINDOW FUNCTIONS – WINDOW CLAUSE
SELECT
supplier_name , country, revenue
, sum(revenue) OVER mywindow as sum
, avg(revenue) OVER mywindow as avg
FROM suppliers
WINDOW mywindow as (PARTITION BY country)

supplier_name country revenue sum avg

ExoTerra Canada 400,000,000 400,000,000 400,000,000

Bodega	Privada Spain 700,000,000 700,000,000 700,000,000

Herpetoculture,	LLC USA 300,000,000 550,000,000 275,000,000

Goose	Island	Beer,	Co USA 250,000,000 550,000,000 275,000,000

36

B E C O M I N G A S Q L G U R U

WINDOW FUNCTIONS – ROW NUMBER
SELECT
Row_number() OVER () as row
,supplier_name , country, revenue
, sum(revenue) OVER mywindow as sum
, avg(revenue) OVER mywindow as avg
FROM suppliers
WINDOW mywindow as (PARTITION BY country)

Row supplier_name country revenue sum avg

1 ExoTerra Canada 400,000,000 400,000,000 400,000,000

2 Bodega	Privada Spain 700,000,000 700,000,000 700,000,000

3 Herpetoculture,	LLC USA 300,000,000 550,000,000 275,000,000

4 Goose	Island	Beer,	Co USA 250,000,000 550,000,000 275,000,000

37

B E C O M I N G A S Q L G U R U

WINDOW FUNCTIONS – RANK
SELECT
Rank() OVER (ORDER BY country desc) as rank
, supplier_name , country, revenue
, sum(revenue) OVER mywindow as sum
, avg(revenue) OVER mywindow as avg
FROM suppliers
WINDOW mywindow as (PARTITION BY country)

rank supplier_name country revenue sum avg

1 Herpetoculture,	LLC USA 300,000,000 550,000,000 275,000,000

1 Goose	Island	Beer,	Co USA 250,000,000 550,000,000 275,000,000

3 Bodega	Privada Spain 700,000,000 700,000,000 700,000,000

4 ExoTerra Canada 400,000,000 400,000,000 400,000,000

38

B E C O M I N G A S Q L G U R U

WINDOW FUNCTIONS – RANK WITH ORDER BY

SELECT
Rank() OVER (ORDER BY country desc) as rank
, supplier_name , country, revenue
, sum(revenue) OVER mywindow as sum
, avg(revenue) OVER mywindow as avg
FROM suppliers
WINDOW mywindow as (PARTITION BY country)
Order by supplier_name

rank supplier_name country revenue sum avg

3 Bodega	Privada Spain 700,000,000 700,000,000 700,000,000

4 ExoTerra Canada 400,000,000 400,000,000 400,000,000

1 Goose	Island	Beer,	Co USA 250,000,000 550,000,000 275,000,000

1 Herpetoculture,	LLC USA 300,000,000 550,000,000 275,000,000

39

B E C O M I N G A S Q L G U R U

CTE’S – INTRODUCTION
• CTE = Common Table Expression
• Defined by a WITH clause
• Can be seen as a temp table or view which is private to a given query
• Can be recursive/self referencing
• Act as an optimization fence
Syntax:

[WITH [RECURSIVE] with_query [, ...]]

Where with_query is:

with_query_name [(column_name [, ...])] AS (select | values | insert | update | delete)

Recursion requires the following syntax within the WITH clause:

non_recursive_term UNION [ALL] recursive_term

40

B E C O M I N G A S Q L G U R U

CTE’S – NON RECURSIVE EXAMPLE
WITH cte_c (country, customer_ct)
as (SELECT country, count(distinct id) as customer_ct

FROM customers
GROUP BY country
)

, cte_s (country, supplier_ct)
as (SELECT country, count(distinct id) as supplier_ct
FROM suppliers
GROUP BY country)

SELECT coalesce(c.country, s.country) as country, customer_ct, supplier_ct
FROM cte_c c
FULL JOIN cte_s s USING (country)

41

B E C O M I N G A S Q L G U R U

CTE’S – NON RECURSIVE EXAMPLE

country customer_ct supplier_ct

Belarus 1

Sweden 1

USA 2 2

Spain 1

Canada 1

Results:

42

B E C O M I N G A S Q L G U R U

CTE’S – RECURSIVE EXAMPLE
List all numbers from 1 to 100:

WITH RECURSIVE cte_name(n)
AS

(VALUES(1)
UNION
SELECT n+1
FROM cte_name
WHERE n<100)

SELECT * FROM cte_name ORDER by n

43

B E C O M I N G A S Q L G U R U

CTE’S – RECURSIVE QUERY EVALUATION
1. Evaluate the non-recursive term, discarding duplicate rows (for UNION). Include all remaining rows in the
result of the recursive query as well as in a temporary working table.

2. While the working table is not empty, repeat these steps:
a. Evaluate the recursive term, substituting the current contents of the working table for the recursive
self reference. Discard duplicate rows(for UNION). Include all remaining rows in the result of the
recursive query, and also place them in a temporary intermediate table.
b. Replace the contents of the working table with the contents of the intermediate table, then empty
the intermediate table.

44

B E C O M I N G A S Q L G U R U

CTE’S – ANOTHER RECURSIVE EXAMPLE

Id Whole Part Count

1 Car Door 4

2 Car Engine 1

3 Car Wheel 4

4 Car Steering wheel 1

5 Cylinder	head Screw 14

6 Door Window 1

7 Engine Cylinder	head 1

8 Wheel Screw 5

Parts

45

B E C O M I N G A S Q L G U R U

CTE’S – ANOTHER RECURSIVE EXAMPLE
Goal: Number of screws needed to assemble a car.

WITH RECURSIVE list(whole, part, ct)
AS
-- non recursive query, assign results to working table and results table
(SELECT whole, part, count as ct FROM parts WHERE whole = ‘car’

-- recursive query with self reference; self reference substituted by working table
-- assigned to intermediary table , working table and appended to results table
UNION
SELECT cte.whole, a.part, a.count * cte.ct as ct
FROM list cte
JOIN parts a

ON a.whole = cte.part

-- empty intermediate table and execute recursive term as long as working table contains any tuple
)

SELECT sum(ct) FROM list WHERE part = ‘screw’
46

B E C O M I N G A S Q L G U R U

CTE’S – CAVEATS

• Recursive queries actually use iteration
• Union vs Union All
• Only one recursive self-reference allowed
• Primary query evaluates subqueries defined by WITH only once
• Name of the WITH query hides any ‘real’ table
• No aggregates, GROUP BY, HAVING, ORDER BY, LIMIT, OFFSET

allowed in a recursive query
• No mutual recursive WITH queries allowed
• Recursive references must not be part of an OUTER JOIN
• Optimization fence

47

B E C O M I N G A S Q L G U R U

CTE’S – WRITABLE CTE

Delete from one table and write into another…

WITH archive_rows(whole, part, count)
AS
(DELETE FROM parts
WHERE whole = ‘car’
RETURNING *
)
INSERT INTO parts_archive
SELECT * FROM archive_rows;

48

B E C O M I N G A S Q L G U R U

CTE’S – RECURSIVE WRITABLE CTE
WITH RECURSIVE list(whole, part, ct)
AS
(SELECT whole, part, count as ct
FROM parts
WHERE whole = ‘car’

UNION
SELECT cte.whole, a.part, a.count * cte.ct as ct
FROM list cte
JOIN parts a ON a.whole = cte.part
)
INSERT INTO car_parts_list
SELECT * FROM list

49

B E C O M I N G A S Q L G U R U

CTE’S – RECURSIVE WRITABLE CTE

Whole Part Ct

car Engine 1

car Wheel 4

car Doors 4

car Steering	wheel 1

car Cylinder	head 1

car Screw 20

car window 4

Car Screw 14

SELECT * FROM car_parts_list

50

B E C O M I N G A S Q L G U R U

LATERAL(9 . 3)

LATERAL is a new(ish) JOIN method which allows a subquery in one part of
the FROM clause to reference columns from earlier items in the FROM
clause

• Refer to earlier table
• Refer to earlier subquery
• Refer to earlier set returning function (SRF)

- Implicitly added when a SRF is referring to an earlier item in the
FROM clause

51

B E C O M I N G A S Q L G U R U

LATERAL – SET RETURNING FUNCTION EXAMPLE

CREATE TABLE numbers
AS
SELECT generate_series as max_num
FROM generate_series(1,10);
--
SELECT *
FROM numbers ,

LATERAL generate_series(1,max_num);

Same as :
SELECT *
FROM numbers ,
generate_series(1,max_num);

Max_num Generate_series

1 1

2 1

2 2

3 1

3 2

3 3

… ….

Results:

52

B E C O M I N G A S Q L G U R U

LATERAL – SUBQUERY EXAMPLE
This DOES NOT work:

SELECT c.customer_name
, c.country
, s.supplier_name
, s.country
FROM

(SELECT *
FROM customers
WHERE customer_name like ‘S%'

) c
JOIN

(SELECT *
FROM suppliers s
WHERE s.country = c.country) s
ON true

53

B E C O M I N G A S Q L G U R U

LATERAL – SUBQUERY EXAMPLE

54

“ERROR: invalid reference to FROM-clause entry
for table "c" Hint: There is an entry for table "c",
but it cannot be referenced from this part of the
query.”

B E C O M I N G A S Q L G U R U

LATERAL – SUBQUERY EXAMPLE
This DOES NOT work:

SELECT c.customer_name
, c.country
, s.supplier_name
, s.country
FROM

(SELECT *
FROM customers
WHERE customer_name like ‘S%'

) c
JOIN

(SELECT *
FROM suppliers s
WHERE s.country = c.country) s
ON true

This DOES work:

SELECT c.customer_name
, c.country
, s.supplier_name
, s.country
FROM

(SELECT *
FROM customers
WHERE customer_name like ‘S%'

) c
JOIN LATERAL

(SELECT *
FROM suppliers s
WHERE s.country = c.country) s
ON true

55

B E C O M I N G A S Q L G U R U

LATERAL – SUBQUERY EXAMPLE

Customer_name Country Supplier_name Country

Stephen	Frost USA Herpetoculture,	LLC USA

Stella	Nisenbaum USA Herpetoculture,	LLC USA

Stephen	Frost USA Goose	Island	Beer,	Co USA

Stella	Nisenbaum USA Goose	Island	Beer,	Co USA

56

Results:

B E C O M I N G A S Q L G U R U

LATERAL – SUBQUERY EXAMPLE
We can re-write this logic using a correlated subquery…

SELECT
c.customer_name
, c.country
, s.supplier_name
, s.country
FROM (SELECT * FROM customers

WHERE customer_name like 'S%') c
JOIN suppliers s

ON s.id =ANY(SELECT id FROM suppliers
WHERE c.country = country)

But it’s pretty messy.

57

B E C O M I N G A S Q L G U R U

THANK YOU!

Questions?

58

B E C O M I N G A S Q L G U R U

REFERENCES

59

• Join Types :
• https://www.postgresql.org/docs/9.5/static/queries-table-expressions.html

• Set Operators:
• https://www.postgresql.org/docs/9.5/static/queries-union.html

• Filtered Aggregates:
• https://www.postgresql.org/docs/9.5/static/sql-expressions.html#SYNTAX-AGGREGATES

• Grouping Sets, Cube, and Rollup:
• https://www.postgresql.org/docs/devel/static/queries-table-expressions.html#QUERIES-GROUPING-SETS

• Subqueries:
• https://momjian.us/main/writings/pgsql/aw_pgsql_book/node80.html

• Window Functions:
• https://www.postgresql.org/docs/9.5/static/tutorial-window.html

• Common Table Expressions (CTE’s):
• https://www.postgresql.org/docs/9.5/static/queries-with.html
• https://wiki.postgresql.org/wiki/CTEReadme

• Later Join:
• https://www.postgresql.org/docs/9.5/static/queries-table-expressions.html#QUERIES-LATERAL

